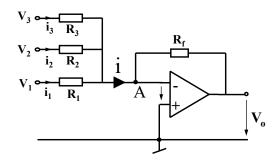
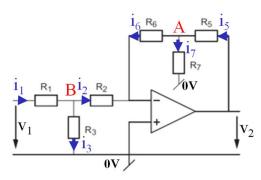

Ex.1 AO réaction négative 1

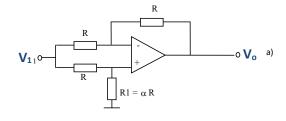

On propose le montage suivant (AO : TL071alimenté avec +15 V et -15 V: Vsat+ " 14 V Vsat- " -13.5 V):

- a) Représenter le signal de sortie du circuit ci-dessous pour un signal d'entrée sinusoïdal de 2 Veff et 1 kHz.
- b) Faire de même pour un signal de 5 Veff.

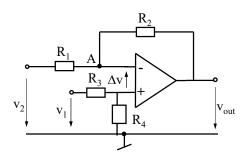

Remarque: pour un signal sinusoïdal, $U_{eff} = U_{crête}/V2$ et par abus de langage un signal de deux Voltes efficaces $(U_{in} = 2 V_{eff})$ veut dire que sa valeur efficace est de deux Voltes $(U_{in,eff} = 2V)$.

Ex.2 AO Sommateur

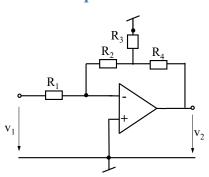
- a) Déterminer la tension au nœud A et exprimer i en fonction des tensions d'entrées $V_1,\,V_2$ et $V_3.$
- b) En déduire V_o en fonction de V_1 , V_2 et V_3 .
- c) Dimensionner les résistances pour obtenir V₀ = V₁ 2 V₂ 3 V₃


Ex.3 AO réaction négative 3

a) Exprimer le gain total V2/V1 du circuit suivant.


Démarche proposée: exprimer tension V_2 en fonction de V_A en utilisant la loi des nœuds en A, puis V_A en fonction de V_B en utilisant les hypothèses d'un AO idéal en réaction négative, puis V_B en fonction de V_1 en utilisant la loi des nouds en B.

Ex.4 AO réaction négative 2


Exprimer la tension Vo en fonction de V1

Ex.5 AO Sommateur 2:

- 1-Montrer que ce circuit réalise la fonction $V_{out} = k_1 V_1 k_2 V_2$.
- 2-Que peut-on dire de la dépendance du choix de k₁ et de k₂ ?
- 3-Dimensionner les résistances pour obtenir $k_1 = 5$ et $k_2 = 9$.
- 4-Proposer un montage en cascadant un inverseur et un sommateur-inverseur qui puisse réaliser la même fonction mais avec un choix de k_1 et de k_2 non corrélé (indépendant).

Ex.6 Ampli inverseur avec Rin élevée

- 1-Etablir la relation $V_2 = f(V_1)$.
- 2-Dimensionner les résistances pour un gain G=-100 et une $R_{in}=1~M\Omega$. (on évitera les résistances supérieures à 1 $M\Omega$ si non les courants qui circulent dans ces résistances deviennent trop faibles et donc du même ordre de grandeur que les courants parasites i+ et i- qui ne peuvent donc plus être négligés).
- 3-Refaire la même question on utilisant un montage inverseur simple.